1. n-ի ի՞նչ ամենափոքր արժեքի դեպքում 12…21 թիվը, որտեղ n-ը 2-ների քանակը է, կբաժանվի 99-ի:
2. Գտեք երկու թվերի հարաբերությունը, եթե նրանց թվաբանական միջինի հարաբերությունը երկրաչափական միջինին 25/24 է:
3. Հայտնի է, որ k-ի ինչ-որ բնական արժեքի դեպքում և 4k + 5, և 9k + 4 արտահայտությունները լրիվ քառակուսիներ են: Ի՞նչ արժեք կարող է ունենալ նույն k-ի համար 7k + 4 արտահայտությունը:
4. ABCD քառանկյան BD անկյունագիծն ուղղահայաց է AB կողմին, իսկ AC անկյունագիծը` CD կողմին: Գտեք AD և BC կողմերի միջնակետերի հեռավորությունը, եթե AD=34, BC=16:
Լուծումներն ուղարկեք միայն This email address is being protected from spambots. You need JavaScript enabled to view it. հասցեով, մինչև հունվարի 10-ը:
Հիմնավորեք լուծումները, միայն պատասխանները մի ուղարկեք: Նշեք Ձեր և Ձեր մաթեմատիկայի ուսուցչի անունը, ազգանունը, դպրոցն ու դասարանը:
Մրցույթի արդյունքները ամփոփված են (տես հաղթողներ բաժինը): Տեղադրում եմ խնդիրների լուծումները:
ԼՈՒԾՈՒՄՆԵՐ
1. Նկատենք, որ
3. Ենթադրենք 4k + 5 = m^2 և 9k + 4 = n^2, որտեղ m-ն ու n-ը ինչ-որ բնական թվեր են: Այդ դեպքում մի կողմից 9m^2 – 4n^2 = 29, մյուս կողմից 9m^2 – 4n^2 = (3m – 2n)(3m + 2n): Քանի որ 29-ը պարզ թիվ է, ապա կամ 3m – 2n = 1, 3m + 2n = 29, կամ 3m - 2n = -1, 3m + 2n = -29: Առաջին դեպքում m = 5, n = 7, երկրորդ դեպքում` m = -5, n = -7: Երկու դեպքում էլ k= = 5: Ուրեմն 7k + 4 = 39:
4. AD-ի միջնակետը նշանակենք N-ով, իսկ BC-ինը` M-ով: BN-ը և CN-ը, որպես ABD և ACD ուղղանկյուն եռանկյունների ներքնաձիգներին տարված միջնագծեր, հավասար են AD-ի կեսին: Այսպիսով, BN=CN=17: Ուրեմն BNC եռանկյունը հավասարասրուն եռանկյուն է, հետևաբար MN-ը կլինի բարձրություն և NMC ուղղանկյուն եռանկյունուց կունենանք MN^2+64=289, որտեղից MN=15:
Հաղթողների և նրանց ուսուցիչների համար Անտարես ընկերությունը սահմանել է հետևյալ մրցանակները.
I մրցանակ
II մրցանակ
III մրցանակ
Ուսուցչի մրցանակ