1. Երկնիշ թվի առաջին թվանշանը երկու անգամ մեծ է երկրորդ թվանշանից: Եթե այդ երկնիշ թվին գումարենք նրա առաջին թվանշանի քառակուսին, ապա կստացվի ինչ-որ ամբողջ թվի քառակուսի: Գտեք սկզբնական երկնիշ թիվը:
2. Հարթության վրա նշեք 6 կետ այնպես, որ յուրաքանչյուրից 1 հեռավորության վրա գտնվեն նշված կետերից երեքը:
3. Մոգական քառակուսու յուրաքանչյուր տողի, սյան և երկու անկյունագծերի թվերի գումարները հավասար են: Կարելի՞ է առաջին 9 հատ պարզ թվերով կազմել 3x3 չափերով մոգական քառակուսի:
Լուծումները կարելի է ուղարկել This email address is being protected from spambots. You need JavaScript enabled to view it. հասցեով, մինչև հոկտեմբերի 20-ը:
Մրցույթի արդյունքները ամփոփված են (տես հաղթողներ բաժինը): Տեղադրում եմ խնդիրների լուծումները:
ԼՈՒԾՈՒՄՆԵՐ
1. Առաջին թվանշանը երկու անգամ մեծ է երկրորդից միայն հետևյալ երկնիշ թվերում. 21, 42, 63, 84: Ստուգումով կարելի է համոզվել, որ դրանցից միայն 21-ն է բավարարում երկրորդ պայմանին` 21+22=25=52:
2. Դիտարկենք միավոր կողմով ABCD քառակուսին: Կառուցենք AB կողմի վրա, քառակուսուց դուրս, AEB կանոնավոր եռանկյունը, իսկ DC կողմի վրա, քառակուսու ներսում DEF կանոնավոր եռանկյունը (տես նկարը): A, B, C, D, E, F կետերը կլինեն որոնելի կետերը:
3. Ենթադրենք առաջին 9 պարզ թվերը դասավորված են քառակուսու վանդակներում: Այդ թվերի մեջ կա միայն մեկ զույգ թիվ` 2-ը: 2-ը պարունակող տողի թվերի գումարը կլինի զույգ (զույգ+կենտ+կենտ=զույգ): Իսկ 2-ը չպարունակող տողի թվերի գումարը կլինի կենտ (կենտ+կենտ+կենտ=կենտ): Ուրեմն այդպիսի քառակուսին մոգական չի կարող լինել: